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Summary» — The way a particle changes ita angular raoiaentnm under 
inhomogeneous Lorentz trarisfonnationg is well-known classically. The 
objeftfc of the present paper and a later one is to consider the problem 
quautum-üieehariicttlly for particles of any mass aad any spin. In the 
present paper we shall consider in detail the case where a particle has 
a definite angular momentut in one frame of reference and we shall 
calculate tl-e probability distn^ atiou of angular momentum in a frame 
translateii with respect to the original frame. In a later paper we shall 
treat the case where the two frames of reference are moving with respect 
to one another. The basic mathematical tool is the form for the infini- 
tesimal generators of the inhomogeneo is Loreutz group devised by 
Lomont and Moses in which the HamUtonian, square of the angular 
momentum, « component of angular momentum, and helieity are diagonal. 
The present papt jud the projected one are important in multiple scat- 
tering p, biems, for it is possible using the result« to take into account, 
to a certain degree at least, the effect of the selection rules. These rules 
are almost always ignored in multiple scattering problems. For example, 
it is shown that wiieu the density of a gas is sutRciently low, radiative 
cooling goes on at a much faster rate when selection rules are taken into 
account than when they are ignored. 

1. - Introduction. 

In elasäical mechanics the problem of determining how the components of 
the angnlar momentum of a particle tranaform when the frame of reference is 
transformed under an inhomogeneous Oa^ean or Lorentz transfonpation has 
an almost trivial solntion. In quantum mechanics, on the oth^r hand, tne 

(*) Operated with support frytn the U. S. Advanc«!  Reaeareh Project*  .A«;ei.cy, 
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problem is very complicated because the components of the angular mo- 
mentum are operatora which do not commute and hence are not simulta- 
neously measurable. Instead of asking for the values of components in dif- 
ferent frames of reference, one either (a) asks for the transformation properties 
of the expectation value of the square of the angular momentum or (6) assigns 
to each frame of reference probabilities that the square of the anpular momentum 
has a certain value. It is seen that the problem i? further complicated if we 
wish to consider particles of any spin and any maM. 

In the present p^per and a subsequent paper we shall consider the quantum- 
mechanical problem where the frames of reference are related by an inhomo- 
geneous Lorentz transformation. Since the Lorentz transformation includes the 
Galilean transformation together with corrections such as the Thomas factor 
as a limiting case and since the relativistic theory includes particle spin in a 
very natural way, it is seen that the case of the Lorentz transformation is far 
more interesting than the Oalilean transformation. 

The principal tool which we shall use will be the form of the infinites)" iki 
generators of the inhomogeneous Lorentz group in terms of a representatioi in 
which the Hatniltonian, square of the angular momentuni, ^-component of the 
angular momentum, and helicity are diagonal.  This form was given in ref. (*). 

Since the eflect of rotations of frames of reference on the angular momentum 
has been studied before, we shall not discuss them further. Instead, we shall 
limit our attention in the present paper to the ease in which a particle of given 
spin and mass has a given value of square of the angular momentum with 
respect to one frame of reference. We shall then consider the expectation value 
of the square of the angular momentum in a frame of reference displaced with 
respect to the original one. We shall also obtain analytically and numerically 
probabilities that the particles in the new frame of reference have certain values 
for the square 01 the angular momentum. 

In the subsequent * '* r we shall consider the case where the two frames of 
reference are movk aspect to each other with a constant velocity, i • 

(«) .1. S. LOMONT and II. E. MOSKS: Journ. M«th. I'hys., 5, 291 (1964). 

# 
The problem of ti± ±  tics of the angular momentum as the frame of 

reference changes is importa;    if one wishes to take into account selection 
rules in certain types of multiple scut*«ring problems. 

Let us consider, as an example, a gas in which photo-ionization and photo- &M' 
recombination take place. One might consider the gas as being contained in 
a transparent container which is illuminated by an external sourc« of photo- 
ionizing radiation for an instant and ask for the rate of decay of the number I ' 
of free electrons due to photo-recombination. The decay rate will depend upon |. 
multiple absorption and emission processes and thus upon the probability 
that the electrou is recaptured by an atom with the subsequent etuissiOB of a 
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photon. Because of the selection rules the phot select run has oaly a finite 
number of possibUities for its angular momentum (usually | or | since the orbital 
angular momentum changes by L) with respect to the emitting atom. To be 
captured in a pertuittccl process by aiiuther atom, the electron must have the 
certain specific angular momenta with respect to the capturing atom, usually 
the sam i angular momenta as it has with respect to the emitting atom. Consider- 
ing the emitting and capturing atom as constituting two frames of reference 
we arc immediately led to the problem of determiuing the probability that 
the electron has a given angular momentum in a second frame when It is pre- 
scribed in the first frame. If the probability of having a suitable angular momen- 
tum is very small with respect to the capturing atom, the probability of mul- 
tiple absorption and emission processes is very small. One may then neglect 
the multiple absorption and emission processes which go on in the gas and regard 
the atoms as being free in so far as photoionization processes are concerned (*). 

AR a second example of multiple scattering where the selection rules may 
p1^ , decisive part, let us consider the radiative cmding of a gas. Consider a 
gas of one kind of atoms, which for simplicity of discussion, can have only 
one excited state. In the gas some of the atoms will be in the excited state and 
some will be in the ground state. If we restrict our attention to the way gas 
cool? by emission of radiation only, some of the atoms will drop from the excited 
state to the ground state by emitting photons. '>f these photons some wilt 
escape the gas completely. Some, however, will be captured by atoms in the 
ground stete and excite these atoms. The excited atoms will then emit photons 
of the same frequency. The absorption and re-emission process slows down 
the rate at which gas cools by emission of radiation. 

As in the previous example each of the photons which is emitted from 
an atom has a specific anguiar momentum whith respect to the atom (the 
angular momentum is I) because of the selection rules. To be absorbed by 
an atom in the ground state the photon raust have the correct angular mo- 
mentum with respect to the absorbing atom (agala i). Hence, one must 
evaluate the probability that the photon has the correct angular momentum 
with respect to the absorbing atom when it has a given angular momentum 
with respect to the eraitting atom. 

One can think of many other examples. Generally speaking a complex 
particle will emit a given particle, the process being subject to selection rules. 
For absorption by another particle one must calculate the probability that 
the right angular momentum conditions are satisfied. 

{*) Wa are indehta«! to Dr. An NAQVI of the fteophysics (urporation of America 
for bis observation of the effect of seleetion rules on the multiple processes in this 
eiample. Indeed, his observation in this case led us to the discussion of the selection 
rules which follow* and ultiuiately to our intflrwt hi the transforniation properties ul 
the angular moiuenttur. in quantum mechanics. 
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In all of these multipl« scattering processes, the crosa-sRctioö a for ab- 
sorption must be repliHjed by Wa wh«re 4t is the probability that the angnlar 
momentum has the correct value. 

As far as the author know?, no one has taken the selection rules seiiously 
lato account in processes of the type deseribed above, possibly because no one 
has heretofore calculated the probability W. 

We may expect that when the gas has low densities so that the average 
distance between atoms is great, W will be »mall so that multiple proeesses 
can be ignores. Likewise at high (translutional) temperatures such that the 
atoms have a high relative velocity on the average with respect to each other, 
W will be small and the effects of multiple processes are »maU. From such 
considerations it is dear that if selection rules are taken into account, the 
effect of multiple processes is less than if the aolection rules are ignored. 

Speaking more abstractly, most calculations of multiple scattering take into 
aeoount conservation of energy but not eonseivation of angular momentam. 
Use of the selection rules has the effect of taking into account conservation 
of angular momentum. 

In the present paper it is shown by numerical calculation that when the 
density is such that the average distance between the emitting particles is 
of the order of half a Oe Broglie wave length of the emitted partkle, W will 
be of the order of 0.2 or less. (It should be noted that Wa is stiU orders of 
magnitude much greater than cross-sections for forbidden transitions.) When 
the mteratoraic distance is greater than of the order i the Pe Broglie wave 
length of the emitted particle W becomes significantly less than 1. Henee 
we are able to establish a critical density, such that if the density of the gas 
is lew than the critical density it is extremely important to take the selection 
rules into aw*»ünt (*) 

2. - Classleal and quantum description of partädes. 

The present Section h intended to give the baekgronnd to the analytical 
and numerical calculations which follow. 

Classically, a relativistic particle of mass ft is specified by the set of 
dynamical variables which consists of the co-ordinates and momenta {**, p'} 
(♦=1,S,S)| the relativistic Hamiltonian ff =«[2 (?')*+Z*^']1 and the eom- 

(•) It seems possible that one could have obtained soch e«timatea as the above by 
a clever use of tbe uucertairtly principle. The-«e estimates are made for tbe case that 
the transMional temperature is (strictly .speaking) zero. However, they are still valid 
for any temperature, since if tbe atoms move with respect to each other, th? I broad- 
sning» of the angular momentu a is even more severe. 
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ponents of the angular momeotttm J1 ^^p^ — x'p3, J- ^if^ — ^p^f J* = 
^x1pi--wipl. (We are anticipating relatiTistic notation in ndng superscripts 
rather than subsoripte for components.) 

Then, as is well-known, we can write a space-time l-veetor s* and a mo- 
mentum 4-vector pa where « = 0,l, 2, St on defining x^^ct and p6~Hlc. 

However, in order to write the components of the angular momentum in 
a relativistic notation, it is necessary to introduce »4x4 dimensional angular 
momentum tensor 

(2.1) 

(2.2) 

a^p' t-xti 

J* = J» 

The remaining coruponents of tha angular momentum tensor have vector trans- 
formation properties which can be exhibited by introducing new dynamical 
variables JP defined by 

(2.3) 
^—etp* h m* — ^ - [Hz1 ~ cHp*] . 

(»-J,3,3), 

We can now return to nourelatmstie notation and say that reiatmsticaUy 
a particle is completely specified by the following dynamical variables: a?, p*, 
J% J* and If. 

Since we shall be iaterested in how the angular momentum changes under 
translation, let us consider a particularly simple translation, namely a trans- 
lation along the «s axis. (It is dear that by a suitable rotation any translatioa 
can be converted ^o such a translation.) 

Then in tsrms of the new frame of reference 

(2.4) 

«r» = ml 

*«' = s* 

m*' = m*~a 

f = p'. 

Hence, from (2.1) and (2.2) 

(3.5) 

eP' ^ J1 f ftp* 

J*' = J» . 

=^. ;.■ -:   :■ ■—J=. 

■ 
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Also denoting the square of the angukr mcajentu.-n by /s where 

(2.6) /» « 2 (J')i 

i 

we have in the new frame 01 reference 

(2.7) p » /* -f 2a(J»?
s - J*/»1) + a'(p' - (p*)*) , 

where p* is the square of the momentum: p* —•^(p*)1. 
i 

To quantise the classical theory of the free relatmstic particle we use the 
csanonieal approach. Namely, wc calcnlatc the Polsson brackets of all of the 
dynamical variables and rcplae« the Foisaon brackets by commutators of the 
operatora which correspond to the dynamical variables. 

As an example let us evaluate the Poisson bracket of J* and pK Be de- 
finition of the Poisson bracket: 

But 

and from (2.3) 

Thus 

{/S P1) = f • 

On replacing the variables f1, p1, and H by operators and on using the feet 
that the quantum Poisson bracket of any two operators A and B is related 
to the commutator [A,B] — AB — BA by 

we obtain the commutation relation 

By replacing the classical dynamical variables by operators anr' Poisson 
brackets by commutators, we obtain quantum conditions on the dynamical 
variables in the form of a commutator algebra. 

I 
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In reJativistic qaantam mechaiiHs, howeTer, the cp-onlinate operators* AT 

hHTe serious difflculties assof-iated with them. For example, from the eom- 
mutatioti rules which are derived in the above mauner, it can be shown that 
the * j-ordlnate operatops do not commute with the sign of the energy and 
lien«« particles with positive energy cannot be localised. Because of this and 
similar difflculties, it is customary to ignore the eo-ordinate operators ic*. One 
thus regards the momentum operators p', the HainUtonian H, the angular 
momentum operators J*, and the « spaee-timo » operators /* as conätitutmg the 
entire set of dynamical va^ahlcs »uich describe ^ free relativlstic partite in 
quantum mechanics. The commutation relations which they satisfy are de- 
rived from the Poisson bracket approach described above. The commutavors 
of interest also form a commutator algebra. We shall write the set of com- 
mutation rulo«. Since we shall have no further occasion to us-? reiatmstie 
notation, we shall replace guperscripts by subscripts. 

l 

(2.8) 

/.,/J — 

0, 

0, 

-. ihJs,, 

ftp* ^[p,Jdi 

Ü, 

= tÄ/s = [/,f JJ, 

•- itepi i 

if>.T 

:. In most disoussioos of the commutation rules {2.0) ff and e are set equal 
to unity to simplify the discussion.   Since we are interested in obtaiamg na* 

i 
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merical values, we shall instead mtroduof the «reduced» operators pl = pi!h, 
ft ^ /f/Ac, Jt == Jj/i, £?i = /i/Ä. These reduced opt?rati»rs satisfy the commuta- 
tion rules (3.8) bul witii h ~c~i. 

It is a re*uarkable faot that the reduced operators can be interpreted as 
the infimtesimal generators of the ray representations of the proper ortho- 
chrOROUS inhomogeueous Lorentz group (references (3) and (3)). They have 
been studit'd in this context and all irreducible represent^tioiis have been found. 
Representatious exist ^hich can be interpreted as eorrespouding to particles 
of any mass and spin. Various forms for the intinitesiiual generators or, equi- 
vahmt, dynamical variables are given in references (a?). 

In references (*"f) the dyBamieal variable» are given in '•epresentations where 
the momeatum operators p, are diagonal {*). 

However, for the purpose of studying the transformation propeities of the 
angular momentum, it is much more desirable to have an angular momentum 
basis. The angular momentum basis is described in detail in reference i1). 
In the present paper we shall dei,cribe only so much of the form of the ope- 
rators in verms of this basis as is needed for the calculations of this paper. 

In additiou +o the dynamical variables p,, J^ ft, and If introduced above, 
it will be convenient to introduce the helicity or circular polarization oper- 
ator w defined by 

(2.9) w =     * 
VH°- r 

For the ease of particles of nonvanisbing mass fi and spin s we introduce 
a Hubert space of functions fiE.j, m, «) where the range of E is fi<E<oo, 
the values taken on by x are a = — »,—-«+1, „., s — l, », and for a fixed 
value of x the range of j is given by |==|al, 1*!+ 1, |«| + 2,... For a fixed 
value of I, m takes on the values m -=—f,—j + l,..., j~-l,j. 

The inner product of two states if given by 

AS 

2  f ^V'*^ h m, z)f{Et j, mt*),    lp = IVE^^CA . 
a.i.mJ     P \ C / 

{*) E. P. WIGKEBI J»».  Math., 40.   149 (1939). 
(8) V. BABOMASSI and E. P. WIGSBBS Proc. Nut. Aead. 8ei. U. S., 34, 211 (1948). 
(*) J,. L, FOLLY; Phys. Rev., 102, 568 (1958). 
(*) In. M. SHIROKOV; 8m. Phys. J.E.T.F., 6, 919 (l9r>sj, 
(•) V. I.  RITUS: 8m. Phys. J.E.T.P., 8. 990 (1959). 
C) J. S. LOMOST and H. E. MOSES; .Journ. Math. Phy*., 3, 403 (1962). 
(*) In rof. {*) the operators are give« in terms of an .r-represeutation which  is 

essentially the Fourier tmnsfoinj of the momeBtum reprcseBtatioB. 

I 
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In terms of this basis wo hsve 

(2.10) 

(2.11) 

JfffiK, h m' «) ^ hmffiK, j, m, «/, 

H(f{K< j, m, x)     KfiE, j, m, x) , 

MV/ (E, ;, m, x) = Äa:9?{£, ;, m, at) , 

(./, + ufJf^E, j, m. x) = Av'l; - #«)(» + wt -f- l)f{E, ;, m + 1, a), 

{Jt— iJJfiE, j, /H, x) = ÄV ()     i«){/- r« -f- l)f/(ff, ?, m— I, x) 

p*f{E, h M, «) = p I .   + JJ f(^.;. m, x) rn-rü • 

■f- 
+ 4 ^(Pm) (i + «) (i     a) (i | x) ^ .     ^ ^ a) 

iF (2i~l)(2; + l) 

(Pa4-tp!)^^1.;, »t, a) - 

=: P h(jti) v^~ mH^+ m + 1)?:(E'?'m+l'a) 

i/(; -:- «+!)(j + J» +2){j — x +l){j -fa +1) 
(2? + l)(2/4-3) 

(i + D 

f»{Ä,j-fl, « + !,«) + 

li/{j_m—l)(i~w)(? —a)(j4-a) ] 

(Pi ~h'i)fiE,j,m,x) - 

= P [i«TT/ö + w)(;—*»-f 1)9!(B, ;, m—1, a) 
(/4-1) 

/(j—ml-1)0    w+2)(?-a + l)(?+«+l) 
(2i + l)(2i + 3) 

9?(J?,i+ l,»—1,«) — 

i l/0 + «—iMi+ »*){/--«W + «) ,« il (2i-l)(2i + l) 
<p(E, j- \, m—1, flt)! . 

If we take a state function which is normalized to unity, i.e. 

« et, 

yr Ah .      . r oLß 
_     — Wi*" h w. a) ia -- 1 ,       thfii        I —- \(fiE,;, m, x) \ 

;,«,»J   V J   P 

i 

% 
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gives the probability that a nH»asttnjment of /^ will give a value of h'j(]-\ 1), 
J, will give a value of hm, and w will girt» a value of hx.   It will be useful to | 
introduce states which are Limultaneoos aigenstates of Ju J, and w such that 
the papticle will have its euergy within a njirrow range. Accordingly we intro- 
dusx. normaliiwd states | 

(2.13) 99{£t;? m, m] = g{E) ö^Ö^Ö^ , 

where g(ß) is a function of M svMi that \g(E)\ has a sharp maximum for 
E^E9 and 

dE     ,_ 

Thus these states are in a sense eig-mstates of H with the eigenvalue J?8. 
For the massless case we set ft~Q in the above expressions. But, in ad- 

dition, H? is a scalar and a takes on one value only. The number a is either 
+ s or — s where H is the spin as before. In the definition of inner product 
the summation over a is omitted. The eigenfunctions which correspond to 
those of (i.l2| have the factor <$      replaced bv 1. 

3. - Transformation properties of the angular momentum operator. The Heisenberg 
and Schrodinger pfetttres of invarlanee. 

In the present Section we shall consider a translation of fpames of reference 
along the s-axis, namely the translation which would lead classlcaUy to the 
results (2.4) aid (2.5) ior the new values of the co-ordinates, components of 
momentum, and components of angular momentum. We want to describe 
qnantum-mechanicaliy how the dynamical variaUei and states in the new 
frame of reference are related to those in the old. 

It is customary to use one of two pictures for describing the change. Thde 
two pictures are generalizations of the Heisenberg and Schrodinger pictures 
for the equations of motion describing the time-dereloproent of a quantum- 
mechanical system. Yfe shall call the corresponding generaazations also Heisen- 
berg and Schrodioger pictures of invariance. 

In the Heisenberg picture of invariance, the states in the two frames ot 
re'^ence are the same but the dynamical variables change. In fact, the re- 
ijtion of the dynamical variable« in the two frames of reference are the same 
as in classical theory. Hence the momentum and angular momentum operators 
in the new frame of reference are related to the old by (2,4) and (2.5). 

i 
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From the general reqwimnenta of invarianee it can be ihowu that the 
primed operators must be related to the uuprimwi rariables by me^tns of a 
unitary transfopmation. If Ä is any dynamical Tariable in the original frame 
of reference and A' is the dyuamieal variable in the new frame then 

(3.1) A'^U^AU. 

For the translation along the j-axis it can be shown that 

(3.3) ff^exp^l^j. 

In the Schrodinger pietare of tavarlance, on the other hand, the operators 
remain unchanged but the stetes ehang«.  Let us denote by f' a state in th 
new frame when the state in the original frame was given by f.   The Schrö- 
dinger state tp1 is required to satisfy 

(3.3) (f', AV') = {tp, A'f). 

One takes 

(3.4) f'^Uf. 

4. - The expectation nüan id the square of tbv anfttl« momentiun. 

In the present Section we shall give mmt expressions for the expectation 
value of the square of the angnlar momentum operator in the second frame 
of reference when in the original frame of reference the particle had a definite 
value for /*, J$, and ». 

It will be convenient to use the Heisenberg picture. Hence the compo- 
nents of angular momentum transform aeeording to (2.5).  Thus 

(1 

Let us assume that we are in the state given by (2.12).   Then on using 
(2.10) and (2,11) we find for th? expectation values for /'* 

(4.2) <,/*> = Äm-M)+/.li     t"? 
"»*< 

i2h-i)ah+m t6(^l}-l-«H + .^ÄiTTi)| 

In (4.2) pe is given bv pt=[(^jei)~ß*<flf and is the absolute value of the 
momentum of the particle in both the original and translated frames.  In de- 

I 
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rivttig the espremdon (4.2) we havt. a«ed ve^ hmrüj the poking property 
of gik) m getting the dependent on P8. For the masdess ease, one shouJd 
replace « by the spin #. 

If in the original frame of reference one did not know the -alue of w,. it 
would be natural to average over all values of this quantum number.   De- 
noting the result of this average by </'*> we find an extraordinarillv simple 
formula 

(4.3) a'1) ^Pkih+i) +|s^. 

This formula is valid for particles of any mass, any s^in, and any circular 
polarization. 

It is interesting to compare this formula with the claisical formula for /'*. 
The classical cou •terpart of averaging over me is to average over all direetjons 
of the vector p.   From (2.7) we find this process yields 

M) r'^Jt + le i^P 

Thus in quantum mechanic the square of the angular momentum changes 
faster than in eiassicai mechanics under the translation of the frame 

In obtaining (4.3) we used the well-known expression for the ave'rage of 
ml, namely. 

(1.5) m« = §rxi 1 «•= I hih + 1) 

& - Probabilities of varioos angular momenta.  Analytic cakulations. 

In the present Section we shall calculate to the fourth order the proba- 
bilities that the square of the angular momentum ha« a certain value when 
in the original frame of reference it is in an eigenstate of the square of the 
angular momentum. That is, in the original frame of reference, the state is 
given by (2.12).   In the new frame of reference, the state is given by 

(5.1) WJE, ft »> «) = VipaiE, h »»«) 

in the Schrödinger picture of invariance, where Ü is the unita^' operator of 
(3.3), which dej>ends on a. Let us define W%{a) to JC the probability that in 
the new frame of reference 7* has the eigenvalue Äs{is+»)(/#+»+l), Js has 
the eigenvalue Äme and w has the eigenvalue fes. (The probability that J$ 

and w have eigenvalues other than vhose given above is zero. Also the range 
of energies is unchanged in a translation of (ramei of referenee so that the 
particle ccntinues to have energies near £# ) 
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Then 

(5.2) 

^3 

rdÄ 

where »is either a positive or negative integer or zero. We have acted as though 
we are discussing the nonzero mass case only, but a slight moditication of 
notation includes the massless case also. 

la order to obtain analytic expressions, we expand V in terms of a power 
series in a and evaluate W+ia) using (5.2). We have carried out thi^ program 
to the fourth order in a. Since the state f0 has a sharp peak at E~E9, 
WB1«) is actually expanded in a power series in apjft in which only even 
powers appear. 

Let us writ« 

(5.3) 

Then 

W» =Wf+ {apjh? Wf + wpjh) IV: 

(5.4) 

WT = b. 
.7<ii TV 

W?» 

wf 

w!3 

0 for al! n except n — 1 or — 1, or n = 0 

(jf- m|) (if    4) 1     {ih + t f     «I) (& + 1)' - 4)       1 
(2;, -l){2;e + l);| {2/#-rl)2is + 3) (i,+ i)ä 

{(?8 + l)s-»i|)(l?*+l)i-4)       1 
(2i6+l)(27e + 3) 

Ol—mDol —4) 1 

(/*+t)s 

(2/.,—1)(2;9 + 1)^" 

»^»^O for aU n except for »=0, I, —I, 2, —2. 

H 
12^(i9 + l)U + 2)s     (ij, + l)(3i, + 3)(j, 

r iSy. + i)3^—i*) (2?-s-i)(2?'8+i)jS " 

i)2 

4- 8 
(?1 - «I) (?1 - 4) (ci. +1)'   »4) ((is + D* - 4) 

+ 4 

(2), -1}(2?S + 1}J1    (:*?', + i)(2;;+3)f?;+ i)ä 

.    (2/s + l)(2;#-r3)(js+l)s   j '     L^-rH^V+DijJ   i 

^ ((/. 4-1^^»I) (;j8 + I)1-^) {{h + 2)*^ w|) ((]„ + 2)-~4) 
(2h + l)(2/9 + 3){j8 + i)»        (2;. + 3}(2i, + 3H;, + 2)S 

^(2/a-l)(2/s + l)^     (2?s—l){2?<l-3)(;,—1)*    /' 

I 

■ 
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(5.4) 

Wf 

!-»;,     1) (2/j + Di»     {2;, + 1) (2i9 + 3) (jB 4-1)»      '" 

(2i, + l)(2|,43)(j,+ l)8        ■(2/;+'3)(2i9+5)(i#T-2)ä   /' 

1/ »4*1 01-»1)01     «|) Wm =  - - - 
3|(;0-l)*i|(/8f J)M2/s-l){2i9+l)i» 

^   (2ja—l){2/9+l)iJ   "(2/a + l)(2?9+3)(ie+l)^ 

(2i§~3}(2i,—l)(j9—1)» 

+ [ 

^, = 1 ((i« 4- D^ml) (0, f j)»-- **) {{ja + 2]-=mZ) {{), + 2)'-«?) 
3       4      (2;s+r)(2j1) + 3){;9+l)i (2?B4-3)(2/s + 5)(i9 + 2)i     ' 

^ _ j_ ((iB-ir-  IB|) (0,--1is-4) j^ _. m|)(g-4) 
-*     4     (2iB-3)(2/s-JH7«::  tf     (2|8~i)C2|,4-l)^" 

For tho maäsless case one should substitute the spin quantum number s for 
*« in |.M). The expressions (5.3) and (5.4) give accttriw/ to at least two signi- 
ficant figures for \apelh\<:l when one compares these results with the nu- 
merical results discussed in the nest Section. 

6. - Noffierteat results. 

In order to obtain the probabilities WJa) for larger Talues of e, we have 
resorted to numerical computation using a large computer. The objective of 
the computarion was to aroid expansions of the type indicated in the previous 
Section. This objective was aceomplished by replacing the operator pi which, 
according to (2.11), is an inAnite-ditnensional matrix in the quantum number j 
by a truncated flnite-dimensional matrix. The finite-dimensional matrix can 
then be diagonalized using standard Computer techniques. Then ^ can be 
obtained in tlis representation for all a by simple exponentiation. Finally, 
one transforms back to tue original representation.   One can check the ac- 

I 
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curacy of a given computatioa by increasing the siEe of the flnite-dimcsional 
matrii which replaces pi and seeing whether the results are sensitive to this 
incre&se in size. 

In Fig. I through 4 typical rcsalts are given graphically. The dimension 
of the matriees was 25x25 in Fig, 1 through 3 and 10x10 in Fig. 4. bincc 
the amount of data which one can obtain by means of this technique is enor- 
mnns, we have averaged over mg and, in the case of nonvanishing muss, over at». 

Fig. I. - Electryn or neutrino, *— 1. jB= 4 - 

0 2 

Fig. 2. - Electro» or ncntrino, s -|, ^=f. 

These averted quantities are the interestiiig ones from a statistical point 
of riew and in the examples of applications given in the Introduction. 

In Fig. 1 we have given graphically W, as a function of öft/Ä for various 
values of n for particles for spin { and for ^=i. In Fig. 2 results are given 
for particles of spin | and for /a = |. In both of these cases it does not mat- 
ter ffhether the particle has zero or nonzero mass in taking the average 
or n^. ISo average has to be taken over ^ since these quantities are sym- 
metric in at« and since a^ —s^l. The particle being considered is an elec- 
tron in t'uj ease that the mass is not zero and is a neutrino if the mass is zero. 
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In Fig, 3 we have given Wn for massless particles of spin I and ?8=1. 
The emm which we have given sbove are of interest in the applications 

discussed in the Introdaction. 

Fig. 3.      Photon, mass—0, «—1. la Fig. 4. - M*ss#0, «. f, jt-l. 

In Fig, 4 we have considered the ewe for which the mass does not vanish 
and for which «=f and ;e=|. Such a particle might be a complex particle 
ejected from a nudetts. We have given this example to show what happens 
for particles of higher spin and angular momentum. 

In aU of these calculations there is quantum « noise » for values of ap9lh 
euch that Wu is small (less than 0.4). That is, small maxima and minima 
are superposed on the general curve. These effects are especially pronounced 
in the curves of Wm before averaging. 

The calculations were taken for valupg of {afaß) = 0,1,2,..., 10 and some 
of the « noise * may have been missed because small intervals in this variable 
were not taken ('). 

(*) The prrtgratn oakmlatea irH for partkleäi „f any «pin, }9 and apjh.   It is thus 
possible to produe* data fur wther case» in the form of table« or of graphs, if nwled. 

I 
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E1ASSUNTO  (*} 

11 modij in cui una p*rtic«llä cambia il suo momento adgolare in s^Bito a tragfor- 
massioni di Lorents inomogenee e da^icameiite ben noto. T/oggetto del präsente l»vt»ro, 
e di uno gaccesäsivo, h di eoasiderare il problema dal pnnto di Tista deila meeeanica 
quantistica pet partwelie di massa e spin qualsiasi. Nel presente lavoro esaminfn'mo 
in dettaglio il easo in eui una particella ha on momeoto attgnlnre delinitu in un giatema 
di riterimento e calcoleremo la probabilita di distribusion? del momeato angolare in 
UB sisteraa di riferimento traslato rispetto al aistema origin^e. In an sacceseiTo buforo 
tratteremo 11 casso in cui i due sjstemi di riferimento si muovoiio l'nno mp«tto ali';dtro, 
Lo stnuaento matematioo fond amen tale e la forma dei genera tori infinltodmaU del 
grappo inomogeaeo di l^orentz ideati li* Lomoat e Mos««, la cai rhasiiltoaiana, il 
quadrato del momeato angolare, la oomponente a del momento angolare, e lelicitä 
80BO di^onali. 11 presente lavoro e quello pK^ettato sono import*ati nei probkmi 
di scattering midtiplo, in qaaato e posaihile, atilizxandone i ilsultati, di teaer coato, 
abaeno flno a ua certo limit«, dell'effei to delle regole di gelfeaioiie. Nei probleini di 
gcattering multiplo tali regole sono quasi sempre ignoraie. Si diay- ^a, ad «sempio, 
ehe quango la densita di nu gas e sufileieBtentent* baasa, il raffreddamento radiativo 
procede molto piü rapid)*meiite se si tien conto delle regole di selemione di quanto noo 
avvenga se si trasearaiMi. 

{*) Trmdusdme n cum dtlla Rfäafwnt, 
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